
RESEARCH ARTICLE

Accelerating prediction of chemical shift of

protein structures on GPUs: Using OpenACC

Eric Wright1, Mauricio H. Ferrato1, Alexander J. Bryer2, Robert Searles1, Juan R. PerillaID
2,

Sunita ChandrasekaranID
1*

1 Dept. of Computer and Information Sciences, University of Delaware, Newark, Delaware, United States of

America, 2 Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, United

States of America

* schandra@udel.edu

Abstract

Experimental chemical shifts (CS) from solution and solid state magic-angle-spinning

nuclear magnetic resonance (NMR) spectra provide atomic level information for each amino

acid within a protein or protein complex. However, structure determination of large com-

plexes and assemblies based on NMR data alone remains challenging due to the complex-

ity of the calculations. Here, we present a hardware accelerated strategy for the estimation

of NMR chemical-shifts of large macromolecular complexes based on the previously pub-

lished PPM_One software. The original code was not viable for computing large complexes,

with our largest dataset taking approximately 14 hours to complete. Our results show that

serial code refactoring and parallel acceleration brought down the time taken of the software

running on an NVIDIA Volta 100 (V100) Graphic Processing Unit (GPU) to 46.71 seconds

for our largest dataset of 11.3 million atoms. We use OpenACC, a directive-based program-

ming model for porting the application to a heterogeneous system consisting of x86 proces-

sors and NVIDIA GPUs. Finally, we demonstrate the feasibility of our approach in systems

of increasing complexity ranging from 100K to 11.3M atoms.

Author summary

Nuclear magnetic resonance (NMR) spectroscopy yields chemical shifts (CSs) which

reveal chemical details of the environment of an atom in a protein. Computer estimation

of CSs require the calculation of several contributing terms including interatomic dis-

tances, ring current effects and the formation of hydrogen bonds. Here, taking advantage

of graphic processing units (GPUs), the estimation of chemical shifts are accelerated thus

enabling the determination of the CSs for large systems, encompassing millions of atoms.

The rapid determination of CSs enables the use of CS-based validation for other molecular

dynamics computations.

This is a PLOS Computational Biology Software paper.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wright E, Ferrato MH, Bryer AJ, Searles

R, Perilla JR, Chandrasekaran S (2020)

Accelerating prediction of chemical shift of protein

structures on GPUs: Using OpenACC. PLoS

Comput Biol 16(5): e1007877. https://doi.org/

10.1371/journal.pcbi.1007877

Editor: Dina Schneidman-Duhovny, Hebrew

University of Jerusalem, ISRAEL

Received: January 14, 2020

Accepted: April 15, 2020

Published: May 13, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1007877

Copyright:© 2020 Wright et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: For source code,

please refer to https://github.com/UD-CRPL/ppm_

one. For dataset, please refer to accession code

3J3Q and 3J3Y (rcsb.org).

http://orcid.org/0000-0003-1171-6816
http://orcid.org/0000-0002-3560-9428
https://doi.org/10.1371/journal.pcbi.1007877
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007877&domain=pdf&date_stamp=2020-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007877&domain=pdf&date_stamp=2020-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007877&domain=pdf&date_stamp=2020-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007877&domain=pdf&date_stamp=2020-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007877&domain=pdf&date_stamp=2020-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007877&domain=pdf&date_stamp=2020-05-26
https://doi.org/10.1371/journal.pcbi.1007877
https://doi.org/10.1371/journal.pcbi.1007877
https://doi.org/10.1371/journal.pcbi.1007877
http://creativecommons.org/licenses/by/4.0/
https://github.com/UD-CRPL/ppm_one
https://github.com/UD-CRPL/ppm_one


Introduction

Computing architectures are ever-evolving. As these architectures become increasingly com-

plex, we need better software stacks that will help us seamlessly port real-world scientific appli-

cations to these emerging architectures. It is also important to prepare applications that can be

readily retargeted to existing and future systems without the need for drastic code changes

while maintaining high performance. However, this is a complex and sometimes an impossible

task to accomplish.

Programming and optimizing for different architectures at a minimum often require codes

to be written in different programming languages thus needing to maintain an entire second-

ary code base and presenting an inherent difficulty for software developers. While ideally, a

single programming standard is preferred, it comes with challenges: (1) Poorly structured

algorithms can hide parallelism from hardware (2) Features in a programming model are

often hardware-facing and only occasionally application/user-facing, and (3) Hard to design

many levels of abstractions to address all problems under study.

Libraries, languages, and directives are three widely accepted software solutions. Libraries

suffer from an inherent scope problem; they can only solve a specific subset of problems and

are only designed for a specific subset of architectures. Languages are flawed because of the

reasons previously outlined such as requiring the programmer to rewrite significant amounts

of code. Directives are hints given to compilers to create necessary executables for the underly-

ing platform. Directives strive to offer portability without losing performance.

OpenMP [1, 2] and OpenACC [3] are two widely popular directive-based models. OpenMP

is a shared-memory programming model that started to support heterogeneous computing

systems since 2013 (OpenMP 4.0 offloading). Applications using the offloading model include

Pseudo-Spectral Direct Numerical Simulation-Combined Compact Difference

(PSDNS-CCD3D) [4] and Quicksilver [5]. OpenACC, ratified in 2011, has since been adopted

widely by scientific developers, to port their large scientific applications—sometimes produc-

tion code—to heterogeneous architectures. Some examples include ANSYS [6], GAUSSIAN

[7], nuclear reactor code Minisweep [8], and Icosahedral non-hydrostatic (ICON) [9]. Both

OpenMP and OpenACC allow incremental improvement to a given code base and help create

a re-usable code for more than one architecture.

This manuscript focuses on the OpenACC model. We use the PGI compiler after observing

their OpenACC implementation’s maturity. GCC’s (by Mentor Graphics) also offers an Open-

ACC implementation, however at the time of running this experiment the implementation

was not yet mature enough.

Overview of the scientific problem: Chemical shift prediction

Nuclear magnetic resonance (NMR) is an experimental technique employed in numerous

fields such as chemistry, physics, biochemistry, biophysics and structural biology. A chemical

shift, the principle observable in NMR instrumentation, provides valuable insight into protein

secondary structure by allowing inference about conformation to be drawn based on peak

shift. Measured in parts per million (ppm), a chemical shift describes the resonant frequency

of a nucleus by comparing its observed frequency to that of a standard reference in the pres-

ence of a magnetic field. Magnetic resonance imaging, or MRI, is a familiar application of this

powerful technology.

A central challenge in NMR spectroscopy is the structural determination of large proteins.

Biomolecular complexes, such as the protein envelopes, or capsids, which enclose and protect

retroviral genomes often contain symmetries and comprise numerous repeated subunits creat-

ing difficulty in NMR experiments. Solid-state NMR (ssNMR) is a powerful emerging solution,

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 2 / 12

Funding: This material is based upon work

supported by the National Science Foundation

(NSF) under grant no. 1814609 and 2027096. The

work is also supported by the NIGMS and NIAID

(P50GM082251 and P30GM110758). This work

used the Extreme Science and Engineering

Discovery Environment (XSEDE), which is

supported by the National Science Foundation

(NSF grant OCI-1053575). The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007877


and has successfully elucidated morphological details of multi-million atom complexes such as

the HIV-1 protein capsid [10, 11].

With the growing sample sizes accessible to biomolecular experiments, the capability of

software and hardware to process and analyze resulting data is also advancing. A method to

calculate a continuum electrotatics model, particularly relevant in computational drug-binding

studies, has been applied to a 20 million atom system and demonstrated parallel efficiency of

0.8, requiring less than a minute of wall time with 512 GPUs [12]. In biomolecular applica-

tions, this trend of increasing computing power is motivating data-driven solutions to prob-

lems such as parameterization of atomic force fields [13], or protein structure determination

from electron microscopy data [14].

Computational tools to aid structure determination with NMR observables have material-

ized into a rich domain of protein study and protein chemical shifts have been used in vary-

ing ways to successfully elucidate structure. Commonly, these programs employ perusal of

scientific databases to establish and parse relationships between shifts, sequence and struc-

ture [15–20]. Thanks to projects such as the BioMagResBank (BMRB) [21], NMR data is

more available than ever before, engendering the feasibility of semi-empirical prediction

methods which utilize existing chemical shift data to parameterize functional prediction

models.

Obviating the need for database searching and sequence matching is a semi-empirical

method named PPM [22]. The goal of PPM is to provide a prediction model that could operate

over NMR conformational ensembles, predict chemical shifts from structures and provide

new dimensions of protein forcefield refinement, structural refinement, and ensemble valida-

tion—a goal which PPM met aptly. In a departure from ensemble analysis, PPM’s successor

PPM_One introduced a static-structure based chemical shift prediction method that showed

competitive accuracy with other software [23].

Motivation

Drawing from approximations of first principle calculations and trained with accessible NMR

data, the PPM_One model considers chemical shift as a sum of discrete descriptors. These

descriptors, which quantify chemical shifts due to ring current effects, hydrogen bond effects,

dihedral angles, and more [22, 23], take the form of relatively simple, and differentiable, func-

tions of the atomic coordinates. Considering these factors, PPM_One is a prime target for par-

allelization and optimization; to extend practical application of the software to larger

structures, populous NMR ensembles, or molecular dynamics trajectories describing thou-

sands of structures. While a suitable candidate to this end, the original PPM_One code was

not written in a way to exploit the massive compute power of accelerators such as GPUs. In

our work, we have ported the PPM_One application to utilize parallel hardware, such as

GPUs, using OpenACC.

This work makes the following contributions:

• Equip domain scientists with an accelerated version of PPM_One that functions in a realistic

lab environment.

• Provide an accelerated chemical shift prediction code that can be adapted to large Molecular

Dynamics packages.

• Demonstrate the feasibility and scalability of our approach in systems of increasing complex-

ity ranging from 2,000 to 13,000,000 atoms.

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 3 / 12

https://doi.org/10.1371/journal.pcbi.1007877


Design and implementation

This section will discuss methods to determine the computationally intensive hotspots, steps

taken to refactor the code, accelerate using OpenACC and incrementally improve the applica-

tion of OpenACC directives.

Identifying computational hotspot in chemical shift prediction

Before accelerating or parallelizing a given code, we use the OpenACC-enabled profiler that

comes packaged with the PGI compiler. The tool, PGPROF, displays detailed information

about CPU and GPU performances. This information includes breakdowns by runtime, mem-

ory management, and accelerator utilization. Fig 1 shows the results of our profile when using

a relatively small molecule (100,000 atoms). The profiler was particularly useful since we were

unfamiliar with the code at the start of this project, and PGPROF quickly allowed us to identify

which functions in PPM_One contained a lot of computation as well as which functions scaled

in time-taken with the dataset size. The different computational functions detected are dis-

cussed in detail in the Target Functions for Acceleration section.

Initial code refactoring

Many of these functions in the original sequential code were written as a direct implementa-

tion of their respective algorithms. As a result they are under prepared for accelerators. For

example, redundancy of memory copying caused by calling the getselect() function an unnec-

essary number of times. To fix this, we altered the code to only call getselect() once, and then

store and reuse the associated memory. This optimization alone led to a 20% performance

increase when running with some of the datasets.

The next optimization we made was to a function called clear() that filters through a list of

protons, removing any of them that do not work with the algorithm. The runtime (varying

Fig 1. Visual representation of serial profiling data. (A) The pie chart represents the time taken by the original version of the

code. (B) The pie chart represents the time consumed by the different parts of the code after implementing various

optimizations.

https://doi.org/10.1371/journal.pcbi.1007877.g001

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 4 / 12

https://doi.org/10.1371/journal.pcbi.1007877.g001
https://doi.org/10.1371/journal.pcbi.1007877


from hours to seconds) of this function varied greatly depending on which dataset was tested

since some molecular structures require more protons to be filtered than others. As a result,

we rewrote clear() to use a more efficient list filter that made the operation take only a few sec-

onds or less for all structures.

Lastly, we ran into some problems with the C++ STL containers that were used within the

code. This mostly applied to the C++ standard vector class. To account for this, many C++ vec-

tors were replaced with basic arrays, this allowed for more efficient communication with the

GPU. In other places, we interfaced with the vector containers by using the built-in data()

function to retrieve the underlying memory, allowing us to move the data to the GPU without

the need to use extra libraries or code rewrites.

Acceleration using OpenACC

OpenACC exposes three levels of parallelism via the gang, worker and vector constructs that

enables programmers to abstract the architecture along with maximally utilizing the potential

of multicore or accelerators. Typically, compute-intensive portions of the program often iden-

tified by profilers are offloaded to the accelerators; a task orchestrated by the host by allocating

memory on the accelerator device, initiating data transfer, offloading the code to the accelera-

tor, passing arguments to the compute region, queuing the device code, waiting for comple-

tion, transferring results back to the host, and deallocating memory. With often only minor

adjustments to memory management near parallelized compute regions, the model accommo-

dates both shared and discrete memory or any combination of the two across any number of

devices. The model has the capacity to expose the separate memories through the use of a

device data environment.

After ensuring that the code was accelerator-compatible, we began applying OpenACC

directives to the code. We tackled each function individually in order of importance, meaning

that we started with get_contact() and finished with getring(). Every time we made a meaning-

ful alteration we would re-run the code on a few different datasets and compare the results to

their non-accelerated baselines. This would let us know if we made any errors along the way.

We decorated the major loops in the code with the OpenACC parallel loop directive. This

will offload loops to the GPU automatically; sometimes just enough to see a speedup as some

loops were embarrassingly parallel. However, in other cases we saw a significant slowdown

and sometimes wildly incorrect code output compared to our serial baseline. These two prob-

lems were overcome by using other OpenACC features.

To fix our incorrect output, we used both the reduction clause and atomic directive. Reduc-

tion clause handles race conditions. These are areas in the code that can result in errors when

multiple parallel units overwrite each other in shared memory. The reduction clause prevents

this by aligning memory reads/writes to produce a single coherent value.

The atomic directive fills a similar purpose. However, it is useful in situations where many

different race conditions could occur at different locations in memory. There was only one sit-

uation in our code where a reduction clause was not sufficient, and that was in the gethbond()

function.

Too many memory transfers between the host and device slowed down the code. After pro-

filing our initial parallelization of the get_contact() function, we saw that the majority of the

time was spent on transferring data between the host and device memory. Originally, get_con-
tact() would be called many times throughout code execution (hundreds to thousands of

times, depending on the dataset). We added a loop that would iterate over all of the individual

get_contact() calls, which gave us another dimension to expose parallelism. This also means

that no data would need to be transferred between the different calls of get_contact(). This

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 5 / 12

https://doi.org/10.1371/journal.pcbi.1007877


change was beneficial because out of all of the functions get_contact() received the largest

speed-up. The speed-up will be discussed in more detail in the Results section.

Target functions for acceleration

Each of the functions we have identified are important to the overall chemical shift prediction

algorithm that PPM_One implements. get_contact(), one of the most important functions in

the PPM_One algorithm, serves as the principle interface between the input coordinates and

secondary structure contact data. get_contact() iterates over all atomic positions, given in the

molecule, and computes a distance between each atom index and the successive atom index.

Next, for each atom in each residue in the PPM_One input structure, the random-coil chemi-

cal shift for atoms in that residue is applied as a fit parameter to normalize the calculated

chemical shift. Since this procedure must be carried out exhaustively over the entire structure

and manages data from individual function calls and parameter tables, it takes up a propor-

tionally large piece of the total runtime and can be a huge sequential bottleneck in the

program.

gethbond() computes the effect that backbone hydrogen bonding has on chemical shift.

PPM_One describes this effect in terms of the inverse of donor-acceptor distance, and applies

a descriptor based on the angle formed between two different atom triples, NHO and HOC0.

Since every amino acid has donor-acceptor pairs, this function gets called with high frequency

and involves distance and angle calculations for each donor and acceptor relative to the speci-

fied atom triples making gethbond() a meaningful target for parallelization and performance-

gain despite its relatively simple formulation.

The getani() function computes the chemical shift due to magnetic anisotropy. Magnetic

anisotropy quantifies the directionally-dependent electromagnetic interactions between

atoms. PPM_One employs this calculation for interactions between protons and peptide-

amide groups consisting of Oxygen (O), Carbon prime (C0) and Nitrogen (N). Additional calls

are made to getani() for side-chain OCN groups of Asparagine and Glutamine, OCO side-

chain groups of Glutamate and Aspartate, and the NCN side-chain of Arginine. The formula-

tion for the calculation used by PPM_One is known as the “axially symmetric model” [24], in

accordance with McConnell’s characterization of anisotropy of peptide groups [25]. At each

function call, the distance between the queried proton and the peptide-amide group is calcu-

lated. This, the vectors pointing from the proton to the peptide-amide group, and from the

proton to the normal vector of the peptide-amide are used to compute an angle to pass into

the magnetic anisotropy expression.

getring() encompasses two different functions in the PPM_One program that calculate the

chemical shift due to ring-current effects; one function calculates ring-current effects felt by

Hydrogen atoms with respect to an aromatic residue, and the other calculates the effect felt by

backbone atoms adjacent to an aromatic residue. PPM_One considers the aromaticity of

amino acids Phe, Tyr, His, Trp-5 and Trp-6. The aromatic rings of these residues have impor-

tant structural implications due to electrostatic induction, as the circular movement of delocal-

ized electrons (ie, current) in conjugated Pi-bonding orbitals induces a magnetic field vector

orthogonal to the plane described by the atoms of the ring. To quantify this effect, the

queried atom’s position in cartesian space must be projected to a position on the 2D subspace

defined by the plane of the aromatic ring. Additionally, distances between all atoms in the

ring are calculated in this function each time it is called, making it costly to compute even

though its application is limited to only aromatic residues and atoms in their local

environment.

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 6 / 12

https://doi.org/10.1371/journal.pcbi.1007877


Results

This section will elaborate on the experimental setup and the results obtained.

Experimental setup

For the multicore, V100 and P40 results shown in both the tables, we use the PSG DGX-1b

compute node consisting of Intel Xeon e5-2698 v4 20 cores and a single NVIDIA Volta V100

card and another compute node that has a single P40. For the serial runs shown in both the

tables, since we could not get time on the PSG system, we have used our internal UDEL’s local

system that has an Intel x990 core.

Datasets

Fig 2 shows the different datasets used for our experiments, represented to scale. The first

tested dataset constitutes 100,000 atoms, roughly a quarter-turn, of the Dynamin GTPase

(structure E) extracted and written to their own Protein Database (PDB) file. Structure B was

the HIV-1 capsid assembly (CA) without Hydrogens. This structure was tested without Hydro-

gens for two reasons: 1) to limit the number of atoms for this test case and 2) to create a variety

in the swath of tested structures. Structures C and D correspond to two variants of the HIV-1

CA, Hydrogens included. Structure C is the HIV-1 CA decorated with Cyclophilin A (CypA),

structure D is the same HIV-1 CA decorated with Myxovirus resistance protein B (MxB).

These two datasets, 5.1 and 5.9 million atoms respectively, were chosen as test cases of hetero-

geneous systems in addition to their increased atom counts compared to the undecorated

HIV-1 CA. The HIV-1 CA test-structures are shown next to their dimeric building block

2KOD (structure A), illustrating the ranging scale and complexity of atomistic representations

of biomolecules. Finally, the largest two test systems were built from the Dynamin GTPase.

Structure E is a 6.8 million atom model, 14 turns, of the GTPase. The largest structure, con-

taining 13.6 million atoms, constitutes 28 turns of the Dynamin GTPase. The secondary-struc-

ture of 2KOD was calculated using Stride [26]. All images were rendered using VMD 1.9.4 and

the co-distributed, Tachyon parallel ray-tracing library [27, 28].

When running the PPM_One application, we noticed that the total runtime is proportional

to the number of atoms contained in the molecule. However, this is not the only deciding fac-

tor. Between the different-sized molecules, the various compute-intensive functions saw a lin-

ear runtime increase compared to total number of atoms. However, the data preprocessing

that the code does can vary greatly based on the molecule, and while we have made many

improvements to this step it is still the bottleneck of the application. Also, the function geth-
bond() will take a significant amount of time for molecules that contain hydrogen, and almost

no runtime for molecules that do not contain hydrogen. To accommodate for these runtime

differences, we are mostly concerned with performance increase of a molecule on different

platforms and less concerned with comparing different molecules to each other.

When observing Table 1 we see a significant decrease in total runtime when comparing the

serial (optimized) run to any of the accelerators. The multicore performance was 18x faster

than the single core results. The Volta V100 results were 56x faster than single core, and 3.1x

faster than multicore.

When observing individual function performance we see more significant speedup num-

bers as shown in Table 2. Comparing V100 results to the multicore results, the get_contact()
function was sped up by 258x, gethbond() by 11x, getani() by 10x and getring() by 3x. Such a

high speed up is common for functions that are purely compute intensive and hence can be

easily optimized for GPUs. Since our major computational functions are seeing this amount of

increase, we predict that much of the remaining total runtime is bound by other portions of

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 7 / 12

https://doi.org/10.1371/journal.pcbi.1007877


Table 1. Results for small to large dataset.

100k atoms 1.5m atoms 5m atoms 6.8m atoms 11.3m atoms

Serial (Unoptimized) 167.11s 572.01s 3547.07s 7 hrs (esimate) 14 hrs (estimate)

Serial (Optimized) 53.57s 196.12s 2003.6s 1510.71s 2614.4s

Multicore 4.67s 32.82s 116.66s 153.8s 146.06s

P40 3.47s 17.15s 56.2s 78.57s 72.55s

V100 3.11s 13.62s 39.79s 49.63s 46.71s

For these results, an Intel Xeon e5-2698 v4 20 cores CPU and a NVIDIA Volta V100 GPU were used.

https://doi.org/10.1371/journal.pcbi.1007877.t001

Fig 2. Visual rendering of used datasets. (A) The first tested dataset constitutes 100,000 atoms, roughly a quarter-turn, of the Dynamin GTPase

extracted and written to their own Protein Database (PDB) file. (B) Structure B was the HIV-1 capsid assembly (CA) without Hydrogens. (C)

Structure C is the HIV-1 CA decorated with Cyclophilin A (CypA). (D) structure D is the same HIV-1 CA decorated with Myxovirus resistance

protein B (MxB). (E) Structure E is a 6.8 million atom model, 14 turns, of the GTPase.

https://doi.org/10.1371/journal.pcbi.1007877.g002

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 8 / 12

https://doi.org/10.1371/journal.pcbi.1007877.t001
https://doi.org/10.1371/journal.pcbi.1007877.g002
https://doi.org/10.1371/journal.pcbi.1007877


the code such as file I/O or preprocessing. We have improved these parts of the code signifi-

cantly since the start of this project (as seen when comparing the serial unoptimized numbers

against the serial optimized). We do not believe that too much more could be done to improve

these aspects without rewriting large portions of the code.

Validation of results: Calculation RMSE

To calculate the Root Mean Square Error (RMSE), we ran the unaltered code on a single core

of a single CPU on 299 different PDB files. Then we reran each file with the developed Open-

ACC code on the same CPU core, but now with GPU offloading. The following numbers

shown in Table 3 are collected by using the RMSE formula on every prediction of every file

comparing the CPU and GPU output.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðPi � OiÞ
2

n

r

ð1Þ

Next, we wanted to assess the prediction accuracy of the PPM_One code against experi-

mentally derived chemical shifts. PPM_One reported root-mean-square prediction error for a

set of validation structures [23], showing 0.9 ppm prediction error for Carbon alpha and

1.0 ppm error Carbon beta atoms, 1.41 ppm error for carboxyl Carbon atoms, 0.24 ppm error

for Hydrogen alpha and 0.43 ppm for amide Hydrogen atoms, and 2.31 ppm error for Nitro-

gen atoms [23]. To compare the accuracy of GPU accelerated PPM_One with respect to exper-

imental chemical shifts, chemical shifts were predicted for three structures which were not

part of the PPM_One training or validation sets [29–31]. We found comparable root-mean-

square prediction error to what was reported for PPM_One [23]: 1.12 ppm prediction error

for Carbon alpha and 1.11 ppm error for Carbon beta atoms, 1.03 ppm error for carboxyl Car-

bon atoms, 0.55 ppm error for Hydrogen alpha and 0.71 ppm for amide Hydrogen atoms, and

1.41 ppm error for Nitrogen atoms.

Together with the RMSE analysis between CPU and GPU versions of the code, we conclude

that PPM_One provides robust and accurate chemical shift predictions which were unaffected

by our GPU acceleration efforts.

Table 2. Runtime for medium dataset by function.

5m atoms Total Runtime get_contact getani getring gethbond

Serial (Optimized) 2003.60 1177.61s 58.95s 22.53s 708.07s

Multicore 116.66s 51.73s 2.4s 0.6s 25.39s

P40 56.2s 1.69s 1.06s 0.5s 17.05s

V100 39.79s 0.2s 0.24s 0.18s 2.35s

https://doi.org/10.1371/journal.pcbi.1007877.t002

Table 3. RMSE difference between CPU and GPU code.

C_a C_b C HN N H_a

RMS error (ppm) 1.58e-4 8.48e-5 1.97e-4 5.22e-5 2.84e-4 1.02e-4

Max error (ppm) 0.013 0.008 0.017 0.007s 0.025 0.013

https://doi.org/10.1371/journal.pcbi.1007877.t003

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 9 / 12

https://doi.org/10.1371/journal.pcbi.1007877.t002
https://doi.org/10.1371/journal.pcbi.1007877.t003
https://doi.org/10.1371/journal.pcbi.1007877


Availability and future directions

The PDB files have been previously published and can be found here [32–34]. Our GitHub

https://github.com/UD-CRPL/ppm_one contains the code used for this manuscript.

Efficiently predicting chemical shifts is an important utility for many potential MD applica-

tions. With our GPU acceleration, we believe that PPM_One can now be used for predicting

chemical shifts of large molecular structures. As part of the future work, for problems of mag-

nitude larger than what we have studied, we will update the software to use MPI with Open-

ACC and scale across multiple nodes.

Author Contributions

Conceptualization: Eric Wright, Mauricio H. Ferrato, Alexander J. Bryer, Robert Searles, Juan

R. Perilla, Sunita Chandrasekaran.

Funding acquisition: Juan R. Perilla, Sunita Chandrasekaran.

Investigation: Eric Wright, Mauricio H. Ferrato, Alexander J. Bryer, Juan R. Perilla, Sunita

Chandrasekaran.

Methodology: Eric Wright, Mauricio H. Ferrato, Robert Searles.

Project administration: Juan R. Perilla, Sunita Chandrasekaran.

Resources: Juan R. Perilla, Sunita Chandrasekaran.

Software: Eric Wright, Mauricio H. Ferrato, Robert Searles.

Supervision: Juan R. Perilla, Sunita Chandrasekaran.

Validation: Eric Wright, Alexander J. Bryer.

Visualization: Alexander J. Bryer, Juan R. Perilla.

Writing – original draft: Eric Wright, Mauricio H. Ferrato, Alexander J. Bryer.

Writing – review & editing: Eric Wright, Alexander J. Bryer, Juan R. Perilla, Sunita

Chandrasekaran.

References
1. Chapman B, Jost G, Van Der Pas R. Using OpenMP: portable shared memory parallel programming.

vol. 10. MIT press; 2008.

2. Van der Pas R, Stotzer E, Terboven C. Using OpenMP?The Next Step: Affinity, Accelerators, Tasking,

and SIMD. MIT Press; 2017.

3. Chandrasekaran S, Juckeland G. OpenACC for Programmers: Concepts and Strategies. Addison-

Wesley Professional; 2017.

4. Clay MP, Buaria D, Yeung PK. Improving Scalability and Accelerating Petascale Turbulence Simula-

tions Using OpenMP; 2017. http://openmpcon.org/conf2017/program/.

5. Richards DF, Bleile RC, Brantley PS, et al. Quicksilver: A Proxy App for the Monte Carlo Transport

Code Mercury. In: IEEE Cluster. IEEE; 2017. p. 866–873.

6. Sathe S. Accelerating the ANSYS Fluent R18.0 Radiation Solver with OpenACC; 2016. https://bit.ly/

2Pk0Nea.

7. Gomperts R. Quantum Chemistry on GPUs; 2016. https://bit.ly/2Pc84wB.

8. Searles R, Chandrasekaran S, Joubert W, Hernandez O. Abstractions and Directives for Adapting

Wavefront Algorithms to Future Architectures. In: 5th PASC. ACM; 2018.

9. Sawyer W, Zaengl G, Linardakis L. Towards a multi-node OpenACC Implementation of the ICON

Model. In: EGU General Assembly Conference Abstracts. vol. 16; 2014.

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 10 / 12

https://github.com/UD-CRPL/ppm_one
http://openmpcon.org/conf2017/program/
https://bit.ly/2Pk0Nea
https://bit.ly/2Pk0Nea
https://bit.ly/2Pc84wB
https://doi.org/10.1371/journal.pcbi.1007877


10. Bayro MJ, Tycko R. Structure of the dimerization interface in the mature HIV-1 capsid protein lattice

from solid state NMR of tubular assemblies. Journal of the American Chemical Society. 2016; 138

(27):8538–8546. https://doi.org/10.1021/jacs.6b03983 PMID: 27298207

11. Bayro MJ, Chen B, Yau WM, Tycko R. Site-specific structural variations accompanying tubular assem-

bly of the HIV-1 capsid protein. Journal of molecular biology. 2014; 426(5):1109–1127. https://doi.org/

10.1016/j.jmb.2013.12.021 PMID: 24370930

12. Yokota R, Bardhan JP, Knepley MG, Barba LA, Hamada T. Biomolecular electrostatics using a fast mul-

tipole BEM on up to 512 GPUs and a billion unknowns. Computer Physics Communications. 2011; 182

(6):1272–1283. https://doi.org/10.1016/j.cpc.2011.02.013

13. Li Y, Li H, Pickard FC IV, Narayanan B, Sen FG, Chan MK, et al. Machine learning force field parame-

ters from ab initio data. Journal of chemical theory and computation. 2017; 13(9):4492–4503. https://

doi.org/10.1021/acs.jctc.7b00521

14. Subramaniya S, Terashi G, Kihara D. Protein secondary structure detection in intermediate-resolution

cryo-EM maps using deep learning. Nat Methods. 2019; 16:911–917. https://doi.org/10.1038/s41592-

019-0500-1

15. Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone tor-

sion angles from NMR chemical shifts. Journal of Biomolecular NMR. 2009; 44(4):213–223. https://doi.

org/10.1007/s10858-009-9333-z PMID: 19548092

16. Shen Y, Bax A. In: Cartwright H, editor. Protein Structural Information Derived from NMR Chemical

Shift with the Neural Network Program TALOS-N; 2015. p. 17–32.

17. XP X, Case D. Automated prediction of 15N, 13Calpha, 13Cbeta, and 13C’ chemical shifts in proteins

using a density functional database. Journal of Biomolecular NMR. 2001; p. 321–333.

18. Seavey BR, Farr EA, Westler WM, Markley JL. A relational database for sequence-specific protein

NMR data. Journal of Biomolecular NMR. 1991; 1(3):217–236. https://doi.org/10.1007/BF01875516

PMID: 1841696

19. Shen Y, Bax A. Protein backbone chemical shifts predicted from searching a database for torsion angle

and sequence homology. Journal of Biomolecular NMR. 2007; 38(4):289–302. https://doi.org/10.1007/

s10858-007-9166-6 PMID: 17610132

20. Kohlhoff KJ, Robustelli P, Cavalli A, et al. Fast and Accurate Predictions of Protein NMR Chemical

Shifts from Interatomic Distances. Journal of the American Chemical Society. 2009; 131(39):13894–

13895. https://doi.org/10.1021/ja903772t

21. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank. Nucleic

Acids Research. 2007; 36:D402–D408. https://doi.org/10.1093/nar/gkm957

22. Li DW, Brüschweiler R. PPM: a side-chain and backbone chemical shift predictor for the assessment of

protein conformational ensembles. Journal of Biomolecular NMR. 2012; 54(3):257–265. https://doi.org/

10.1007/s10858-012-9668-8 PMID: 22972619

23. Li D, Brüschweiler R. PPM_One: a static protein structure based chemical shift predictor. Journal of Bio-

molecular NMR. 2015; 62(3):403–409. https://doi.org/10.1007/s10858-015-9958-z PMID: 26091586

24. Osapay K, Case DA. A new analysis of proton chemical shifts in proteins. Journal of the American

Chemical Society. 1991; 113(25):9436–9444. https://doi.org/10.1021/ja00025a002

25. McConnell HM. Theory of Nuclear Magnetic Shielding in Molecules. I. Long-Range Dipolar Shielding

of Protons. The Journal of Chemical Physics. 1957; 27(1):226–229. https://doi.org/10.1063/1.1743676

26. Frishman D, Argos P. Knowledge-based secondary structure assignment. Proteins: structure, function

and genetics. 1995; 23:566–579. https://doi.org/10.1002/prot.340230412

27. Humphrey W, Dalke A, Schulten K. VMD. Journal of Molecular Graphics. 1996; 14:33–38. https://doi.

org/10.1016/0263-7855(96)00018-5 PMID: 8744570

28. Stone J. An Efficient Library for Parallel Ray Tracing and Animation. Computer Science Department,

University of Missouri-Rolla; 1998.

29. Dejian M, Brandon NR, Tanxing C, Bondarenko V, Canlas C, Johansson J, et al. Four-α-helix bundle

with designed anesthetic binding pockets. Part I: structural and dynamical analyses Biophysical Jour-

nal. 2008; 94(11):4454–4463 https://doi.org/10.1529/biophysj.107.117838

30. Teilum K, Thormann T, Caterer NR, Poulsen HI, Jensen PH, Knudsen J, et al. Different secondary struc-

ture elements as scaffolds for protein folding transition states of two homologous four-helix bundles Pro-

teins: Structure, Function, and Bioinformatics. 2005; 59(1):80–90 https://doi.org/10.1002/prot.20340

31. Balayssac S, Jiménez B, Piccioli M. Assignment strategy for fast relaxing signals: Complete aminoacid

identification in thulium substituted calbindin D 9K Journal of Biomolecular NMR. 2006; 34(2):63–73

https://doi.org/10.1007/s10858-005-5359-z

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 11 / 12

https://doi.org/10.1021/jacs.6b03983
http://www.ncbi.nlm.nih.gov/pubmed/27298207
https://doi.org/10.1016/j.jmb.2013.12.021
https://doi.org/10.1016/j.jmb.2013.12.021
http://www.ncbi.nlm.nih.gov/pubmed/24370930
https://doi.org/10.1016/j.cpc.2011.02.013
https://doi.org/10.1021/acs.jctc.7b00521
https://doi.org/10.1021/acs.jctc.7b00521
https://doi.org/10.1038/s41592-019-0500-1
https://doi.org/10.1038/s41592-019-0500-1
https://doi.org/10.1007/s10858-009-9333-z
https://doi.org/10.1007/s10858-009-9333-z
http://www.ncbi.nlm.nih.gov/pubmed/19548092
https://doi.org/10.1007/BF01875516
http://www.ncbi.nlm.nih.gov/pubmed/1841696
https://doi.org/10.1007/s10858-007-9166-6
https://doi.org/10.1007/s10858-007-9166-6
http://www.ncbi.nlm.nih.gov/pubmed/17610132
https://doi.org/10.1021/ja903772t
https://doi.org/10.1093/nar/gkm957
https://doi.org/10.1007/s10858-012-9668-8
https://doi.org/10.1007/s10858-012-9668-8
http://www.ncbi.nlm.nih.gov/pubmed/22972619
https://doi.org/10.1007/s10858-015-9958-z
http://www.ncbi.nlm.nih.gov/pubmed/26091586
https://doi.org/10.1021/ja00025a002
https://doi.org/10.1063/1.1743676
https://doi.org/10.1002/prot.340230412
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/0263-7855(96)00018-5
http://www.ncbi.nlm.nih.gov/pubmed/8744570
https://doi.org/10.1529/biophysj.107.117838
https://doi.org/10.1002/prot.20340
https://doi.org/10.1007/s10858-005-5359-z
https://doi.org/10.1371/journal.pcbi.1007877


32. Byeon IJL, Meng X, Jung J, Zhao G, Yang R, Ahn J, et al. Structural convergence between Cryo-EM

and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell. 2009; 139(4):780–

790. https://doi.org/10.1016/j.cell.2009.10.010

33. Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, et al. Mature HIV-1 capsid structure by cryo-

electron microscopy and all-atom molecular dynamics. Nature. 2013; 497(7451):643–646. https://doi.

org/10.1038/nature12162

34. Kong L, Sochacki KA, Wang H, Fang S, Canagarajah B, Kehr AD, et al. Cryo-EM of the dynamin poly-

mer assembled on lipid membrane. Nature. 2018; 560(7717):258–262. https://doi.org/10.1038/s41586-

018-0378-6

PLOS COMPUTATIONAL BIOLOGY Accelerating prediction of chemical shift of protein structures on GPUs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007877 May 13, 2020 12 / 12

https://doi.org/10.1016/j.cell.2009.10.010
https://doi.org/10.1038/nature12162
https://doi.org/10.1038/nature12162
https://doi.org/10.1038/s41586-018-0378-6
https://doi.org/10.1038/s41586-018-0378-6
https://doi.org/10.1371/journal.pcbi.1007877

